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Abstract

A framework, which combines mathematical analysis, closure theory, and phenomeno-

logical treatment, is developed to study the spectral transfer process and reduction

of dimensionality in turbulent 
ows that are subject to rotation. First, we outline a

mathematical procedure that is particularly appropriate for problems with two dis-

parate time scales. The approach which is based on the Green's method leads to the

Poincar�e velocity variables and the Poincar�e transformation when applied to rotating

turbulence. The e�ects of the rotation are now re
ected in the modi�cations to the

convolution of nonlinear term. The Poincar�e transformed equations are used to obtain

a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit

when the non-dimensional parameter � � 
t ! 1 (
 is the rotation rate and t is

the time). The `split' of the energy transfer in both direct and inverse directions is

established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM)

closure to the Poincar�e transformed Euler/Navier{Stokes equations. This closure leads

to expressions for the spectral energy transfer. In particular, an unique triple velocity

decorrelation time is derived with an explicit dependence on the rotation rate. This

provides an important input for applying the phenomenological treatment of Zhou. In

order to characterize the relative strength of rotation, another non-dimensional number,

a spectral Rossby number, which is de�ned as the ratio of rotation and turbulence time

scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are

deduced.
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1 Introduction

Turbulent 
ows subject to solid body rotation have many important applications in aerospace

engineering and geophysics. Although all turbulence models rely on assumptions on energy

transfer, there is a great deal of di�culties in studying the time evolution of kinetic energy

and dissipation of rotating turbulent 
ows. Although it has been long recognized that ro-

tation can signi�cantly modify properties of 
uid 
ows, rotation does not even enter the

transport equations for kinetic energy. This `indirect' but signi�cant in
uence by rotation

is the physical root of the di�culties. A turbulence model which can account for rotation

adequately has not yet been developed.

Experimental studies1�4, direct numerical simulations (DNS)5�8, large-eddy simulations

(LES)5;9, and closure approximation10 have established that solid body rotation suppresses

the nonlinear energy cascade from large to small scales. The e�ect of rotation is through

phase scrambling. Zhou11 recently noted the strong similarity between magnetohydrody-

namic (MHD) turbulence and initially isotropic turbulence subject to rotation. For MHD

turbulence, Kraichnan12 pointed out that the propagation of the Alfv�enic 
uctuations dis-

rupts the phase relation and thereby may be expected, on the average, to decrease energy

transfer. Similarly, uniform rotation causes plane waves to propagate with phase speed

2
k3=k. Here the rotation vector is considered to act along the vertical ( x
jxj). This evidence

formed the basis for extending the phenomenology originally developed for MHD turbulence

to rotating turbulence11.

In this paper we focus our attention on developing a better understanding of the energy

transfer process in homogeneous, isotropic, incompressible turbulence subjected to a uni-

form background rotation. In particular, we address the problem of suppression of energy

transfer and reduction of dimensionality due to rotation. We also deduce an energy spec-

trum and spectral eddy viscosity that have an explicit dependence on rotation rate. Our

analysis is based on the fact that this is a two time scale problem. We �rst present a general

mathematical framework based on the Green's method which is applicable when there are

disparate time scales. The approach leads to the Poincar�e transformation and the Poincar�e

velocity variables. The latter is accomplished with the time{dependent change of velocity
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variables

U(t; x) = L(t)u =

Z
G(
t; x; y)u(t; y)dy: (1.1)

Here L(t) is the linear propagator describing propagation of inertial waves in rotating 
uids

(Poincar�e13) and G(
t; x; y) is the Green's tensor corresponding to the gyroscopic operator.

The e�ects of the rotation are now re
ected in modi�cations of the convolution in the

nonlinear term.

The transformed equations are used to obtain a time-dependent analog of the Taylor-

Proudman theorem valid in the asymptotic limit � = 
t ! +1. The subtlety of the un-

steady situation lies in the fact that purely 2D turbulence is unstable to 3D perturbations

and is, therefore, un-realizable. Bershadskii, et al.14 argued that the quasi-2D turbulence

regime arises as a result of a spontaneous breaking of re
exional symmetry, which in turn is

a consequence of the instability of 2D turbulence to 3D wave motions. The experiments of

Hop�nger et al.15 beautifully demonstrated that two-dimensional rotating 
uid columns are

capable of supporting wave motions. The major problem in obtaining a faithful description

of quasi2D turbulence is to account for 3D e�ects. To this end, we deduce an analog of the

Taylor-Proudman theorem for time-dependent 
ows. The operation of vertical averaging

applied to the Poincar�e transformed equations is crucial in our analysis. The main conclu-

sion is that in the above limit the vertically averaged velocity U satis�es the classical 2D-3C

Euler/Navier-Stokes equations with initial data averaged in the x3 direction. The di�erence

V = U �U is, however, not small. The three-dimensional (x3-dependent) vector �eld V

is a passive vector transported by U. It satis�es equations with coe�cients depending on

U. The `split' of the energy transfer in both direct and inverse directions is established:

the vertically averaged velocity U transfers energy to large scales (inverse cascade) as 2D

turbulence; and the passive vector V transfers energy directly from large to small scales.

An EDQNM analysis16;17 is then performed on the Poincar�e transformed rotating Navier{

Stokes equations. Unlike the previous EDQNM analysis (EDQNM1 and EDQNM2) of Cam-

bon and Jacquin10 which was based on the original rotating Navier-Stokes equation, our

analysis leads to a unique time scale for the decorrelation of triple velocity correlations.

This provides an important input for applying the phenomenological treatment of Zhou11.
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In this analysis, �3, the time scale for decay of triple correlations, which is responsible for

inducing turbulent spectral transfer, may depend on any relevant turbulence parameters.

The usual assumptions, energy conservation by the nonlinear interaction and a local cas-

cade, imply that � is independent of wavenumber k. Here � is the energy 
ux in the inertial

range which also equals the dissipation rate. Local cascade implies that � is explicitly pro-

portional to �3 and depends on the wavenumber and on the power of the omni-directional

energy spectrum (Kraichnan12). A simple dimensional analysis leads to

� = A2�3(k)k
4E2(k) (1.2)

where A is a constant. The Kolmogorov18 spectrum is recovered when �3(k) is chosen

as a nonlinear time scale, �nl(k). Using the triple decorrelation time scale derived from

EDQNM16;17, we deduce the energy spectra and spectral eddy viscosity at asymptotic limits.

In order to characterize the relative strength of rotation, a spectral Rossby number, de�ned

as the ratio of rotation and turbulence time scales, is introduced. For rotating turbulence

in equilibrium, the Rossby number is the only relevant parameter controlling the e�ects

of rotation on the 
ow. However, for the non-equilibrium situation, two non-dimensional

parameters are required.

Our analysis suggests the following picture of the energy transfer process in the limit

of 
t ! 1 and small spectral Rossby number (strong rotation). There are inverse energy

transfers by �U with �5=3 omni-directional energy spectrum. This is the same as two-

dimensional turbulence. At the same time, there is also a direct energy cascade governed

by the equation for the passive vector V at 
t!1 and 
 >> 1. The energy spectrum of

the total velocity is `k�2' by Zhou11.

This paper is organized as follows. In Section 2, a mathematical procedure based on

Green's method is described. The Poincar�e transformation which leads to the Navier-

Stokes equations for the Poincar�e velocity variable is developed. The analog of the Taylor-

Proudman theorem for time-dependent 
ows is derived in Section 3 by vertical averaging of

the Poincar�e transformed equations. Analysis of the Poincar�e transformed energy transfer

equations is presented in Section 4. The energy spectrum and spectral eddy viscosity are

deduced in Section 5. The possibility of extension of the Green's method to study the e�ects
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of solid body rotation on 
ows in complex geometries is indicated in Section 6.

2 Poincar�e transformed Euler/Navier-Stokes equations for

rotating 
uids

We consider 
ows uniformly rotating with a constant angular velocity about the x3 axis.

The Navier-Stokes equations referred to rotating coordinates

@

@t
U� �r2U +U � rU+ 2
JU = �rp; (2.1)

r �U = 0:

Here U = (U1; U2; U3) is the velocity �eld, J is the rotation matrix, 2
JU is Coriolis force

and p is the modi�ed pressure. We note that fJUg�= fe3 �Ug�= ��3jUj where �ijl is the

antisymmetric tensor of order 3, is not equal to zero only if ijl are di�erent, and equal to

1 if the permutation ijl is even and �1 if the permutation is odd.

Eq. (2.1) can be written in the component form

U�;t + UjU�;j � �U�;jj + 2
��3jUj = �p;� (2.2)

U�;� = 0:

We introduce the Leray projection operator on the divergence free vector �elds denoted by

P. Applying P to Eq. (2.1), we obtain

@

@t
U� �r2U +PfU � rUg+ 2
PJU = 0: (2.3)

We note thatPfU�rUg= �PfU�curlUg. The pressure is eliminated in favor of the tensor

P(k) = fP��(k)g (P��(k) = ����
k�k�
k2

, k = jkj in Fourier space) using the incompressibility

condition. Direct calculation shows that P(k)JU(k)= P(k)JP(k)U(k)= k3
k2
��lmklUm(k).

Transforming to wavenumber space, the equation of motion (2.3) written in the component

form reads

@

@t
U�(k; t) + �k2U�(k; t) + 2


k3

k2
��lmklUm(k) = �

i

2
P�lm(k)

X
p+q=k

Ul(p; t)Um(q; t) (2.4)
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where

P��
(k) = k�P�
(k) + k
P��(k): (2.5)

For 
 = 0 we obtain equations which are the starting point of EDQNM analysis of non-

rotating turbulence presented by Orszag16.

Next we introduce the Poincar�e velocity u related to U as follows

U = exp(�2
PJt)u =

Z
G(�
t; x; y)u(y)dy: (2.6)

Here G is the Green's function of the gyroscopic operator (e.g. Ladyzhenskaya19). The

identity Eq. (2.6) can be easily inverted: u = exp(2
PJt)U =
R
G(
t; x; y)u(y)dy. We

�nd that the Poincar�e velocity u is solenoidal: r � u = 0. The operator exp(�2
PJt)

is the linear propagator studied by Poincar�e13. The mathematical theory of the Poincar�e

propagator has attracted a considerable amount of attention since the work of Sobolev20.

In particular, a number of results on the structure of this operator in bounded domains are

available (Ladyzhenskaya19). They can be used to study the e�ects of background rotation

on turbulence in complex geometries. In this paper we restrict our attention to homogeneous


ows. Possible applications of the Green's function method in complex geometries will be

indicated in Section 6.

Eq. (2.3) written in Poincar�e u{variables becomes

@

@t
u � �r2u = exp(2
PJt)fexp(�2
PJt)u� curl(exp(�2
PJt)u)g; (2.7)

r � u = 0:

The Poincar�e transformation (2.6) which relates velocity variables U and u can be

written in the component form as follows

U�(k; t) = cos(
k3

k
2
t)u�(k; t)�

1

k
sin(

k3

k
2
t)��lmklum(k; t): (2.8)

This transformation eliminates rotational term in (2.4) but alters the nonlinear term as

shown below.

It is convenient to introduce a 3�3 orthogonal matrixM = fM�
g de�ned on the linear

subspace of vectors u(k) satisfying k � u(k)=0:

M�
(k;
t) = cos(
k3

k
2
t)��
 +

1

k
sin(

k3

k
2
t)��l
kl: (2.9)
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The inverse of the 3� 3 matrix M denoted by M�1 = f ~M�
g is easily computed as

~M(k;
t) �M�1(k;
t) =M(k;�
t): (2.10)

Then the Poincar�e transformation (2.8) is inverted as follows

u�(k; t) = cos(
k3

k
2
t)U�(k; t) +

1

k
sin(

k3

k
2
t)��lmklUm(k; t): (2.11)

Using the relation (2.8), we obtain

@

@t
U�(k; t) + �k2U�(k; t) + 2


k3

k2
��lmklUm(k; t) =

cos(
k3

k
2
t)

@u�

@t
(k; t)�

1

k
sin(

k3

k
2
t)��lmkl

@um

@t
(k; t): (2.12)

Therefore,

cos(
k3

k
2
t)

@u�

@t
(k; t)�

1

k
sin(

k3

k
2
t)��lmkl

@um

@t
(k; t) + �k2M�m(k;�
t)um(k; t) =

�
i

2
P�lm(k)

X
p+q=k

Ul(p; t)Um(q; t):(2.13)

Recall that the velocity vector U is expressed in terms of the Poincar�e velocity u via the

Poincar�e transformation.

Eq. (2.13) can be written in the equivalent form

M(k;�
t)(
@u(k; t)

@t
+ �k2u(k; t)) = �

i

2

X
p+q=k

Ul(p; t)Um(q; t)

0
BBBB@
P1lm(k)

P2lm(k)

P3lm(k)

1
CCCCA : (2.14)

Inverting the 3 � 3 orthogonal matrix M(k;�
t) (M�1(k;�
t)=M(k;
t) by (2.10)), we

obtain

@u(k; t)

@t
+ �k2u(k; t) = �

i

2

X
p+q=k

Ul(p; t)Um(q; t)M(k;
t)

0
BBBB@
P1lm(k)

P2lm(k)

P3lm(k)

1
CCCCA : (2.15)

We rewrite (2.15) in the component form
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@

@t
u�(k; t) + �k2u�(k; t)

= �
i

2

�
cos(

k3

k
2
t)P�lm(k) + sin(

k3

k
2
t)����

k�

k
P�lm(k)

� X
p+q=k

Ul(p; t)Um(q; t): (2.16)

Substituting expressions for Ul and Um in terms of u via the Poincar�e transformation (2.8),

we obtain the Poincar�e transformed Navier-Stokes equations written in terms of the Poincar�e

velocity u as follows:

@

@t
u�(k; t) + �k2u�(k; t) = �

i

2

X
p+q=k

F��
(k;p;q; 2
t)u�(p; t)u
(q; t) (2.17)

where

F��
(k;p;q; 2
t) =
8X

j=1

F
j
��
(k;p;q; 2
t) =

8X
j=1

f j(k;p;q; 2
t)Qj
��
(k;p;q): (2.18)

Here

Q1
��
(k;p;q) = P��
(k);

Q2
��
(k;p;q) = �P��m(k)

1

q
�mh
qh

Q3
��
(k;p;q) = �P�l
(k)

1

p
�ls�ps

Q4
��
(k;p;q) = P�lm(k)

1

p
�ls�ps

1

q
�mh
qh;

Q5
��
(k;p;q) = ����

k�

k
P��
(k);

Q6
��
(k;p;q) = �����

k�

k
P��m(k)�mh


qh

q
;

Q7
��
(k;p;q) = �����

k�

k
P�l
(k)�ls�

ps

p
;

Q8
��
(k;p;q) = ����

k�

k
P�lm(k)�ls�

ps

p
�mh


qh

q
(2.19)

and

f1(k;p;q; 2
t) = ccc(k; p; q; 2
t) = cos(
k3

k
2
t) cos(

p3

p
2
t) cos(

q3

q
2
t);

........................
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f8(k;p;q; 2
t) = sss(k; p; q; 2
t) = sin(
k3

k
2
t) sin(

p3

p
2
t) sin(

q3

q
2
t):

In the limit � = 
t! 0, the �rst term, j = 1, is the leading order term. The non-rotating

limit can be recovered from the f1(k;p;q; 2
t) term by setting 
 = 0 in Eq. (2.17):

@

@t
u�(k; t) + �k2u�(k; t) = �

i

2
P��
(k)

X
p+q=k

u�(p; t)u
(q; t): (2.20)

We note that the Coriolis term 2
k3
k2
��lmklUm(k) in Eq. (2.4) (after projection on the

divergence free subspace) has the form of a scalar times the curl operator. Therefore, eigen-

functions of this operator coincide with eigenfunctions of the curl operator. Decomposition

of velocity �elds along eigenfunctions of the curl operator is known as the \helical wave

decomposition" and has attracted a considerable amount of attention since the work of

Mo�att21, Moses22, Lesieur17 and others. More recently, it was used in investigations of the

energy transfer in both non-rotating and rotating turbulent 
ows10;23 and for weakly com-

pressible turbulence24. The main focus of these analyses is amplitude equations describing

helical wave interactions. In the present paper we prefer to work directly with velocity

variables without reverting to the helical wave amplitude equations. Our EDQNM develop-

ment, presented in detail in the Appendix, is a natural extension to turbulence subjected to

a uniform background rotation of Orszag's16 EDQNM analysis of non-rotating turbulence.

3 Dynamics of vertically averaged velocity and the anal-

ogy of the Taylor-Proudman theorem for time-dependent


ows

In this section we use the Poincar�e transformed equations to deduce an analog of the Taylor-

Proudman theorem for time-dependent 
ows valid in the asymptotic limit � = 
t ! +1.

The Taylor-Proudman theorem in its classical form states that steady inviscid 
ows in a

rapidly rotating frame are two-dimensional, i.e. are independent of the coordinate along the

axis of rotation of the 
uid (Tritton25, Speziale26). The importance of this statement stems

from its use in calibration of turbulence models for rotating 
ows. According to Speziale26,
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it is essential that turbulence models be developed whose properties in non-inertial frames

of reference are consistent with the Taylor-Proudman theorem describing the structure of

solutions of the Navier-Stokes equations in a rapidly rotating frame.

The subtlety of the unsteady situation is, in the fact, that purely two-dimensional turbu-

lence is unstable to three-dimensional perturbations and, therefore, unrealizable. The fact

that two-dimensional rotating 
uid columns are capable of supporting 3D (x3-dependent)

wave motions is beautifully demonstrated in the experiments of Hop�nger et al.15. The

major problem is to account for the collective contribution to the dynamics made by wave

motions. To this end, we deduce an analog of the Taylor-Proudman theorem for time-

dependent 
ows.

The main idea is to obtain equations for the vertically averaged velocity using the for-

mulation of the problem in terms of Poincar�e velocity variables. We �nd that the vertically

averaged equations have a particularly simple form in the asymptotic limit 
t ! +1.

The main part of the equations coincides with the two-dimensional, three components (2D-

3C) Euler/Navier-Stokes equations. The additional term involves terms varying only on

a fast time scale. The structure of these equations allows us to obtain the analog of the

Taylor-Proudman theorem for time-dependent 
ows.

In this section we use the notation �u� for the vertical (the direction of rotation) average

of u�: �u� =
R
u�dx3. Let k0 = (k1; k2; 0) where k

0 is the 2D horizontal component of the

wavevector k. Vertical averaging in Fourier space corresponds to restricting Fourier sums to

wavevectors satisfying the condition k3 = 0. Thus, u�(k) = u�(k
0) is a 2D-3C velocity �eld.

An important observation is that U=exp(�2
PJt)u= u since M(k;
t)jk3=0 = Id (3 � 3

identity matrix) which follows from (2.9). Applying the operation of vertical averaging

to Eq. (2.16), we obtain

@

@t
u�(k

0; t) + �k2u�(k
0; t) = �

i

2
P�lm(k)

X
p+q=k

Ul(p; t)Um(q; t) = (3.1)

�
i

2

X
p+q=k;k3=p3+q3=0

P�lm(k)Ul(p; t)Um(q; t):

Recall that the velocity vector U is related to the Poincar�e velocity vector u by Eq. (2.8).
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Then Eq. (3.1) together with k3 = 0 implies

@

@t
u�(k

0; t) + �k2u�(k
0; t) = �

i

2

X
p0+q0=k0;p3+q3=0

F̂��
(k
0;p;q; 2
t)u�(p; t)u
(q; t) (3.2)

where

F̂��
(k
0;p;q; 2
t) =

4X
j=1

F̂
j
��
(k

0;p;q; 2
t) =
4X

j=1

f̂ j(k0;p;q; 2
t)Q
j
��
(k

0;p;q): (3.3)

We stress that k3 = 0 implies that we have only four terms in the summation. Since

k3 = p3 + q3 = 0, we obtain

f̂1(k;p;q; 2
t) = cos(
p3

p
2
t) cos(

q3

q
2
t) = cos(

p3

p
2
t) cos(

p3

q
2
t);

f̂2(k;p;q; 2
t) = cos(
p3

p
2
t) sin(

q3

q
2
t) = � cos(

p3

p
2
t) sin(

p3

q
2
t);

f̂3(k;p;q; 2
t) = sin(
p3

p
2
t) cos(

q3

q
2
t) = sin(

p3

p
2
t) cos(

p3

q
2
t);

f̂4(k;p;q; 2
t) = sin(
p3

p
2
t) sin(

q3

q
2
t) = � sin(

p3

p
2
t) sin(

p3

q
2
t): (3.4)

In the limit � = 
t � 1, Eq. (3.2) has a separation of time scales and can be further

simpli�ed. Since f̂2 and f̂3 are expressed as sums of sin functions only, these terms make

no contribution to the dynamics on slow time scale (no resonances). On the other hand, the

functions f̂1 and f̂4 are expressed as sums of cos functions. Then resonances contributing

to the slow time scale dynamics are possible only in the case p = q. Combining these terms,

we obtain

f̂1(k0;p;q; 2
t)Q1
��
(k

0;p;q)u�(p; t)u
(q; t) +

f̂4(k0;p;q; 2
t)Q4
��
(k

0;p;q)u�(p; t)u
(q; t) =

= cos2(
p3

p
2
t)P��
(k)u�(p; t)u
(q; t)� sin2(

p3

p
2
t)P��
(k)u�(p; t)u
(q; t) =

= cos(
p3

p
4
t)P��
(k)u�(p; t)u
(q; t): (3.5)

In the derivation of Eq. (3.5) we have used the fact that Q4
��
(k;p;q) = P��
(k) if k3 = 0,

p = q. The above calculation shows that

�
i

2

X
p0+q0=k0;p3+q3=0

F̂��
(k
0;p;q; 2
t)u�(p; t)u
(q; t) =

�
i

2

X
p0+q0=k0;p3=q3=0

P��
(k
0)u�(p

0; t)u
(q
0; t) + R(
t;u;u) (3.6)
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where R(
t;u;u) denotes terms evolving on a fast time scale only (without resonances

contributing to the dynamics on the slow time scale). Finally, Eq. (3.2) becomes

@

@t
u�(k

0; t) + �k2u�(k
0; t) = �

i

2

X
p0+q0=k0;p3=q3=0

P��
(k
0)u�(p

0; t)u
(q
0; t) +R(
t;u;u)(3.7)

where R(
t;u;u) is a rapidly oscillating term

j
1

T

Z T

0
R(
t;u;u)dtj �

const


T
! 0 (3.8)

for 
T >> 1. Eq. (3.7) written in physical space has the form

@

@t
u� �r2u+ u � ru = �rp+ R(
t;u;u); (3.9)

r � u = 0:

Thus, up to the rapidly oscillating terms R(
t;u;u), the vertically averaged velocity

u = U satis�es the 2D-3C Navier-Stokes equations (3.9) which are averaged in x3 initial

data. Therefore, we obtain

The analog of the Taylor-Proudman theorem for time-dependent 
ows:

The vertically averaged component �U of the exact solution U of 3D-3C Euler/Navier-Stokes

equations with initial data U0 is close to the exact solution of 2D-3C Euler/Navier-Stokes

equations ~U with initial data U0 averaged in x3. The di�erence V = U � ~U between the

full 3D-3C velocity U and 2D-3C velocity ~U corresponding to the vertically averaged initial

data is, however, not small.

A mathematically rigorous formulation and proof of the analog of the Taylor-Proudman

theorem for time-dependent 
ows (including error estimates) are presented in Babin, Ma-

halov and Nicolaenko27.

We now present an alternative development of the time-dependent analog of the Taylor-

Proudman theorem based on physical arguments. Both computations5�9 and experiments1�4

have noted an increase in integral lengthscales along the rotation axis relative to those in

non-rotating turbulence. An increase in the integral lengthscales has been thought to be

a prelude to a Taylor-Proudman reorganization to two-dimensional turbulence. It is rea-

sonable to conjecture that at zero Rossby number the only active triads in the asymptotic
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state are those which are invariant under these scalings. This is called the selection principle

for triad interactions in the asymptotic state. Clearly, 2D-3C interactions corresponding to

p3 = q3 = 0 are invariant under scalings of p3, q3 in a trivial way. On the other hand, in the

asymptotic state of rotating homogeneous turbulence interactions are restricted to pairs of

wavevectors satisfying the resonance conditions28;23.

�
p3

p
�
q3

q
=
k3

k
: (3.10)

One can easily �nd solutions of the resonance equation (3.10) obeying the selection

principle. The solutions are fq3 = 0; k = pg, fp3 = 0; k = qg and fk3 = 0; p = qg.

As shown above, the interactions fk3 = 0; p = qg make no contribution to the dynamics

on slow time scale. Two other resonance conditions can be written in equivalent form

fq3 = 0; k21 + k22 = p21 + p22g and fp3 = 0; k21 + k22 = q21 + q22g. Clearly, they are invariant

under the process of an increase in integral lengthscales along the rotation axis relative to

those in the horizontal plane (k3 ! �k3; p3 ! �p3; q3 ! �q3). Thus the only active triads

in the asymptotic state are fq3 = 0; k21 + k22 = p21 + p22g and fp3 = 0; k21 + k22 = q21 + q22g.

The condition p3 = 0 simply means that the �rst entry in the bi-linear form is replaced

by its averaged (vertical) value. Similarly, the condition q3 = 0 implies that the second

entry is replaced by its averaged value. Therefore, the scale-invariant equations valid in the

asymptotic limit � = 
t! +1 have the form

@u

@t
= B(u;u) +B(u;u): r � u = 0: (3.11)

Here u denotes vertical averaging of velocity. Applying the operation of vertical averaging

to Eq. (3.11) and using the fact that B(u;u) +B(u;u)= B(u;u) +B(u;u)= �u � ru, we

conclude that u = U satis�es the classical 2D-3C Euler equations.

The analog of the Taylor-Proudman theorem for time dependent 
ows provides a clear

picture on the reduction of dimensionality at the limit 
t ! 1. The 
ow is three-

dimensional when the R term in Eq. (3.9) is signi�cant (no `split' of velocity into �U and

V) while the 
ow is quasi-two dimensional when R is negligible (`split' of velocity into �U

and V). The error estimate, Eq. (3.8), can be used to obtain the value of critical �� when

such a transition takes place.
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We are now in a position to present a physical picture when the time-dependent 
ow

satis�es the analog of the Taylor-Proudman theorem for time dependent 
ows. There are

many two-dimensional layers. If vertically averaged, then the dynamic equations for U

are governed by the 2D Navier-Stokes equations with fast-time scale corrections (Eq. 3.7).

In this case, the direction of the energy transfer for �U is from direct to inverse cascade

within each pancake. These layers, however, are not isolated among themselves. For the

Euler equations, the x3-dependent component V is not small even at zero Rossby number

as shown in Babin, Mahalov and Nicolaenko27. The evolution equation for V satis�es a

`passive vector' equation that is driven by �U. This equation couples these two-dimensional

layers and is responsible for the (suppressed) direct energy transfer from large to small

scales. The energy spectrum in this case will be discussed in Section 5.

4 The Poincar�e transformed energy transfer equation

In this section the EDQNM closure is applied to the Poincar�e transformed Navier-Stokes

equations written in terms of the Poincar�e velocity u. Following the standard EDQNM

closure procedure, the triple Poincar�e velocity correlation is expressed in terms of second

order moments. The details are presented in the Appendix. The novelty of our approach

is that the EDQNM closure is applied to the Poincar�e transformed equations which shows

the need for a heuristic approximation for the e�ects of rotation in the third order moment

equations. Lesieur17 points out that choice of eddy damping is more di�cult in problems

where waves interact with turbulence. The previous EDQNM analysis of rotating turbulence

requires three evolution equations for second order moments [Cambon and Jacquin10]. The

Coriolis e�ect, 
, only appears in one of them. As a result, there are two possibilities on

the memory integral. The EDQNM1 version of Cambon and Jacquin10 does not include 


in the `damping rate'. On the other hand, 
 is introduced explicitly into in their EDQNM2

version. They found that these two choices will lead to di�erent results and the latter

is needed for the anisotropization mechanisms and to predict a departure from isotropy.

Our EDQNM closure is based on the Poincar�e transformed Navier-Stokes equations. This

Poincar�e transformed equation has the same spectral structure as that of the original one
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(with 
 introduced explicitly into the generalized projection operator) and has a unique

memory integral.

The EDQNM closure of the Poincar�e transformed equation, presented in detail in the

Appendix, provides a framework to study the observed suppression of energy transfer when

turbulence is subject to rotation. We assume isotropy of the energy spectrum when exam-

ining the energy transfer process. Experiments1�4 and DNS5�9 of rotating homogeneous

turbulence established that although the rotation increased the anisotropy of the length-

scales, the three principal components of the Reynolds stress tensor remain nearly equal

provided that the initial state is isotropic. Thus, our assumption is consistent with these

�ndings.

The isotropy assumption leads to

S��(k; t) =
1

2
U(k; t)P��(k); (4.1)

where U(k; t) = E(k;t)
4�k2 and E(k; t) is the energy spectrum. From the Appendix, the equation

for U(k; t) reads

(
@

@t
+ 2�k2)U(k; t) =

X
p

(a0(k; p; q;
; t)U(p; t)U(q; t)+ (4.2)

b0(k; p; q;
; t)U(k; t)U(q; t)+ c0(k; p; q;
; t)U(k; t)U(p; t));

where k = p + q is understood. The geometrically determined coe�cients a0(k; p; q;
; t),

b0(k; p; q;
; t) and c0(k; p; q;
; t) are given in the Appendix. We note that they contain f

and the memoral integral � (see (A.5)). In order to evaluate these integrals, we expand f

in a sum of sin and cos using the identities of a kind

cos� cos cos� =
1

4
(cos(�+  + �) + cos(�+  � �) + cos(��  + �) + cos(��  � �));

Odd terms in t can be expanded in sums of sin functions. For example,

sin� cos cos� =
1

4
(sin(�+  + �) + sin(�+  � �) + sin(��  + �) + sin(��  � �)):

These identities and the following identitiesZ
eax cos(bx)dx =

eax

a2 + b2
(a cos(bx) + b sin(bx));Z

eax sin(bx)dx =
eax

a2 + b2
(a sin(bx)� b cos(bx)) (4.3)
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are now used to obtain analytical expressions for the coe�cients � (see (A.5)).

Let � = p3+q3
jp+qj ,  = p3

p
and � = q3

q
. Then we obtain

Z t

0
e�[�(k

2+p2+q2)+�kpq ](t��) cos(�2
�) cos( 2
�) cos(�2
�)d� =
1

4
(�++(k; p; q;
:
t)+

�+�(k; p; q;
;
t) + ��+(k; p; q;
;
t) + ���(k; p; q;
;
t));

Z t

0
e�[�(k

2+p2+q2)+�kpq ](t��) cos(�2
�) sin( 2
�) sin(�2
�)d� =
1

4
(�+�(k; p; q;
:
t)+

��+(k; p; q;
;
t)� �++(k; p; q;
;
t)� ���(k; p; q;
;
t));

Z t

0
e�[�(k

2+p2+q2)+�kpq ](t��) sin(�2
�) cos( 2
�) sin(�2
�)d� =
1

4
(�+�(k; p; q;
:
t)+

���(k; p; q;
;
t)� �++(k; p; q;
;
t)� ��+(k; p; q;
;
t))

Z t

0
e�[�(k

2+p2+q2)+�kpq ](t��) sin(�2
�) sin( 2
�) cos(�2
�)d� =
1

4
(���(k; p; q;
:
t)+

��+(k; p; q;
;
t)� �++(k; p; q;
;
t)� �+�(k; p; q;
;
t)):

The EDQNM relaxation time scales ���(k; p; q;
;
t) and �̂��(k; p; q;
;
t) are given by

���(k; p; q;
;
t) =
1

4

�f
(��  � �)2
 sin((��  � �)2
t) + [�(k2 + p2 + q2) + �kpq] cos((��  � �)2
t)

[�2(k2 + p2 + q2) + �kpq ]2 + (��  � �)2
2

� exp [�[�(k2 + p2 + q2) + �kpq ]t]
[�(k2 + p2 + q2) + �kpq]

[�2(k2 + p2 + q2) + �kpq ]2 + (��  � �)2
2
g(4.4)

and

�̂��(k; p; q;
;
t) =
1

4

�f
(��  � �)2
 cos((��  � �)2
t) + [�(k2 + p2 + q2) + �kpq] sin((��  � �)2
t)

[�2(k2 + p2 + q2) + �kpq ]2 + (��  � �)2
2

� exp [�[�(k2 + p2 + q2) + �kpq ]t]
(��  � �)2


[�2(k2 + p2 + q2) + �kpq ]2 + (��  � �)2
2
g(4.5)
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Since the eddy damping is much greater than the molecular viscosity, the EDQNM time

scale for the triple velocity decorrelation can be simpli�ed to

���(k; p; q;
;
t)�
1

4
f
(��  � �)2
 sin((��  � �)2
t) + �kpq cos((��  � �)2
t)

�2kpq + (��  � �)2
2

� exp [��kpqt]
�kpq

�2kpq + (��  � �)2
2
g(4.6)

and

�̂��(k; p; q;
;
t)�
1

4
f
(��  � �)2
 cos((��  � �)2
t) + �kpq sin((��  � �)2
t)

�2kpq + (��  � �)2
2

� exp [��kpqt]
(��  � �)2


�2kpq + (��  � �)2
2
g(4.7)

They characterize the relaxation of < u(k)u(p)u(q) > toward a quasi-equilibrium by

nonlinear transfer and molecular viscosity. Rather than solving the EDQNM evolution

equations, we will only use information about the triple time scale of velocity decorrelation

obtained from this theory as an input for a phenomenological treatment. In the next section

we will use this information to deduce the energy spectrum and the spectral eddy viscosity

in various asymptotic limits.

5 Phenomenological analysis at asymptotic limits

In order to infer the form of the inertial-range spectrum, it is necessary to estimate the

magnitude for the triple correlations. In general, �3, the time scale for decay of triple

correlations which is responsible for inducing turbulent spectral transfer, may depend on any

relevant turbulence parameters. Because energy is conserved by the nonlinear interaction

and a local cascade has been assumed, � is independent of k. Local cascade29�31 also implies

that � is explicitly proportional to �3 and depends on the wavenumber and on the power of

the omni-directional energy spectrum12. A simple dimensional analysis leads to

� = A2�3(k)k
4E2(k) (5.1)

where A is a constant32. If the energy-containing range excitation were absent, it would

be expected that the nonlinear interaction would build up substantial triple correlations in
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the local dynamical time �nl(k). In steady state isotropic turbulence, the only time scale

available for �3(k) is the nonlinear time scale, �nl(k); therefore the Kolmogorov18 spectrum

is recovered. The equation which determines the spectral eddy viscosity, �T (k), is given

by33

� = �T (k)S
2(k) = �T (k)E(k)k

3: (5.2)

In our spectral representation, it is convenient to use the spectral Rossby number

Ros(k) = �k=
, which is the ratio of turbulence (nonlinear eddy turn-over) time scale

and rotation time scale. For a given inertial Rossby number, we can de�ne the cases of

strong rotation when Ros � 1 and the weak rotation when Ros � 1.

We now consider the number of the non-dimensional parameters needed. For the turbu-

lence in equilibrium the Rossby number is the only relevant parameter controlling the e�ects

of rotation on the 
ow. However, for the non-equilibrium situation, new non-dimensional

parameters � = 
t and � = �kt are required. They correspond to non-equilibrium e�ects

at long and short time scales, respectively.

We have shown that the parameter � = 
t is introduced into the time scale of the

triple velocity product as the arguments of sin and cos functions. These terms are clearly

responsible for the scrambling of the energy transfer and do not go to zero as t ! 1. As

a result, the values of the time scale of the triple velocity product will oscillate; and this

oscillation can be removed only by a long time average. For a turbulent 
ow with a given

initial Rossby number (therefore, the rotation rate 1=
), the non-dimensional parameter �

will evolve in three phases: (1) � ! 0; (2) � bounded; (3) � ! 1. In addition, � = �kt is

introduced in the second term in both �� and �̂� as a damping factor. This damping term

is signi�cant initially but it will go to zero as t!1.

It is clear that the general treatment of this problem is rather complicated. When

a resonance condition, say � +  + � = 0, is satis�ed, the corresponding decorrelation

time �++ is simply the nonlinear time scale �nl = 1=[k3E(k)]1=2 with a damping factor

[1� exp [�[�kpq]t]] for short time scale.

The non-resonance condition needs to be examined with care. Asymptotic limits of

strong and weak rotation o�er considerable simpli�cation. These limits correspond to small
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(spectral or initial) and large Rossby numbers, respectively.

For the small Rossby number case, we have

���(k; p; q;
;
t)�
sin((��  � �)2
t)

(��  � �)

� exp [��kpqt]

�kpq

(��  � �)2
2
(5.3)

and

�̂��(k; p; q;
;
t)�
cos((��  � �)2
t)

(��  � �)

� exp [��kpqt]

1

(��  � �)

(5.4)

Alternatively, for large Rossby number, one can show that

���(k; p; q;
;
t)�
cos((��  � �)2
t)

�kpq
� exp [��kpqt]

1

�kpq
(5.5)

and

�̂��(k; p; q;
;
t)�
sin((��  � �)2
t)

�kpq
� exp [��kpqt]

(��  � �)2


�2kpq
: (5.6)

5.1 Disruption of homogeneous isotropic turbulence by rotation

We now focus on the short time behavior of the decorrelation time scale for the triple

velocity products.

There are two di�erent situations. First, the time under consideration is so short (t! 0)

that both ��� ! 0 and �̂�� ! 0 by de�nition in Eqs. (4.6)-(4.7). When the rotation is

also very strong, it is called the Rapid Distortion Theory (RDT) limit34�36. To make

contact with RDT, we rewrite � = t�=t�
, where t
� = �t=K0 and t�
 = �=(K0
). This

procedure nondimensionalizes the time scales using the initial turbulent kinetic energy (K0)

and dissipation rate. Note that the inertial Rossby number of the 
ow is de�ned as Ro =

0:5�=(K0
). RDT theory assumes that the nonlinear e�ects do not have time to build up

under the conditions of very short time and strong system rotation. Speci�cally, the RDT

limit is valid when the initial Rossby number Ro � 1 and the time normalized by initial

turbulent time t� � 1.
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We now consider the second case where the nonlinear e�ects become important but time

t� is still short. Again, two distinct physical situations are included in this limit: (a) weak

rotation; (b) strong rotation (we call it `disruption' as an extension of the RDT limit). In

the `disruption' limit the rotation is very strong. In a �xed time interval, 
 is very large.

However, the time t is very short so that 
t is bounded.

For the weak rotation case (large Ros), we have

� � �̂ � [1� e��kpq t]�
1

�kpq
: (5.7)

Similarly, for the strong rotation case, one has

� � [1� e��kpq t]�
sin(2
t)



; (5.8)

and

�̂ � [1� e��kpq t]�
cos(2
t)



: (5.9)

These relations form a basis for constructing implicit equations for the energy spectra

and spectral eddy viscosity in non-equilibrium turbulent 
ows. Such 
ows are deferred to

a future study.

5.2 Long-time dynamics of uniformly rotating 
uids

We now consider the limit of long-time dynamics. Here, the long time limit means that

the time t is large enough so that the damping terms in � and �̂ can be neglected. Again,

we must consider two physically distinct situations: strong and weak rotation. In the weak

rotation case we �nd that the decay rate of triple velocity correlations is given by the

turbulence nonlinear time scale �nl. Therefore, at leading order, the energy spectrum and

spectral viscosity are the same as that of the non-rotating case. The rotation e�ects can be

introduced trivially here by keeping the next order correction for rotation in � and �̂. We

omit this analysis here.

In the the strong rotation case, the dependence of ��� and �̂�� on 
 should be consid-

ered with care. The time scale for �3(k), the decorrelation of the triple velocity product, is
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again the controlling parameter in
uencing the energy transfer process. When a resonance

condition, say �+ +� = 0, is satis�ed, the corresponding decorrelation time �++ is simply

the nonlinear time scale �nl = 1=[k3E(k)]1=2. In the mean time, the other contributions to

this time scale at this given condition, �+�; ��+; ��� are of order

� � �+� � ��+ � ��� �
sin(2
t)



: (5.10)

Similarly, we �nd that

�̂
 �
cos(2
t)



(5.11)

In order to remove the phase from Eqs (5.10)-(5.11), we introduce the long time averaged

time scale which determines the decorrelation of triple velocity products at a small spectral

Rossby number ( 
t!1):

�3 = ��
 =

q
�2
 + �̂2
 � 1=
: (5.12)

Therefore, in the regime of high Reynolds numbers and low Rossby numbers, rotating

turbulence is characterized by two disparate time-scales: a short time scale associated

with the rotation frequency �
 = 1=
 and a nonlinear time scale. Our EDQNM time

scale discussed above provides an additional support for the choice of �
 = 1=
 in the

phenomenological analysis of Zhou11. This is the key assumption in his application of the

extended phenomenology of Kraichnan12 and Mattheaus and Zhou32 to isotropic turbulence

subject to rotation. This is also the basic assumption in the large-eddy simulation (LES)

of strong rotating turbulence of Squire et al.9 where they argued that the time scale of the

triple velocity correlation is proportional to �
 = 1=
. Squires et al.9 assumed that the

correlation time of the nonlinear triadic interactions is directly proportional to the short

time scale �
. The predictions of the asymptotic decay for the kinetic energy in rotating

turbulence, based on this crucial assumption on the time scale, have been con�rmed within

a few percent by their LES runs for times of order O(103) of initial turbulence. We �nd

that a direct application of �3 = �
 resulted the energy spectrum for turbulence subject to

strong rotation:

E(k) = C
(
�)
1=2k�2: (5.13)
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In general, Zhou11 has pointed out that there is a need to incorporate both rotating and

eddy-turn-over time scales. We make use of the viewpoint that the lifetime of triple corre-

lations in rotating turbulence might be more accurately treated by taking into account the

possibility that these correlations decay because of the in
uence of both wave propagation

and nonlinear triadic interactions32. The simple choice

1

�3(k)
=

1

�nl(k)
+

1

�
(k)
(5.14)

satis�es the appropriate limiting cases: �3(k) ! �nl without rotation and �3(k) ! �
 with

strong rotation. The generalized inertial range energy spectrum is

E(k) = Z2A�4=3�2=3k�5=3; (5.15)

where Z is given by11;32

Z =
1

2

�p
Y +

q
�Y + 2

p
Y 2 + 4Z0

�
(5.16)

where

Y =
3

vuut1

2
+

s
1

4
+ (

4Z0

3
)3 +

3

vuut1

2
�

s
1

4
+ (

4Z0

3
)3: (5.17)

The parameters A = C
�3=4
K (Matthaeus and Zhou32), k
 = (
3=�)1=2 and Z0 =

A2=3 

(�k2)1=3

= [Ak

k
]2=3. The strong rotation limit then leads to C
 = 1=A = 1:22 � 1:87

for the typical range of Kolmogorov constant. These equations reduce to the non-rotating

Kolmogorov \-5/3" spectrum when Z0 ! 0 (so that Z ! 1), and to our rotating modi�ed

\-2" spectrum when Z0 ! 1 (so that Z ! Z
1=4
0 ). Fig. 1 illustrates spectra obtained this

way with � = 1 and A = 0:7 (we have chosen CK = 1:5), varying the reference rotation

rate over values 
 = 0; 10; and 100. The zero rotation case is a pure Kolmogorov spectrum

while the 
 = 100 case is very nearly k�2 spectrum. For intermediate rotation rates the

spectrum varies smoothly between these two limiting forms, according to the increase of

the controlling parameter Z0 with increasing ratio k
=k.

The rotation dependent eddy viscosity can be estimated11 as

�T (k) = �0[
E(k)

k
]1=2

1

1 + y�1=2
; (5.18)
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where �0 is a constant and y = k3E(k)=
2 is de�ned following Zeman33. The inertial range

wavenumber k can be related37�38 to the turbulent kinetic energy K and dissipation rate �

k =
E(k)

K3=2
(3Ck=2)

3=2:

For the inertial range spectrum, Eq. (5.18) can be rewritten in physical space:

�T (x) = �00
K2

�

1

1 + 0:36K
=�
; (5.19)

The eddy viscosity above is only appropriate for homogeneous turbulence without mean

velocity gradients. For turbulent 
ows with mean velocity gradients in a rotating frame,

the e�ect of rotation appears in conjunction with the mean vorticity39 and Eq. (5.19) can be

extended in a straightforward way by replacing 
 by (W ijW ij)
1=2 (Gatski and Speziale40).

Here W ij = !ij + ��mji
m is the extended absolute vorticity tensor de�ned by Gatski and

Speziale40 (� is a constant). The constant �00 can then be evaluated in homogeneous shear


ow where Wij reduces to the uniform shear rate. Such 
ows are deferred to a future study.

We note that the scaling of the eddy viscosity with rotation rate is inconsistent with RDT.

The spectral time scale is an important measurement11. The Kolmogorov hypothesis

implies that the energy-containing range excitation does not a�ect energy transfer within

the inertial range. Therefore, the average rate of energy dissipation is identi�ed with the

rate of spectral energy transfer and the rate of energy input. The nonlinear (or eddy

turnover) time-scale, �nl(k) � [k3E(k)]�1=2, is then equivalent to the spectral transfer time,

�s. Zhou
11 has shown that

�s(k) =
1

A2

[�nl(k)]
2

�
(k)
; (5.20)

or more generally,

�s(k) =
1

A2

�2nl(k)

�3(k)
: (5.21)

Therefore, the time for the spectral energy transfer is increased to a value greater than �nl;

thus nonlinear energy transfer is suppressed by rotation.

We stress that the long-time averaging procedure here is the same as that introduced

for the time-dependent analog of the Taylor-Proudman theorem. This averaging procedure,
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as de�ned in (3.8), removes the oscillations and `splits' the velocity �elds into two parts.

Our analysis suggests that the energy transfer process in the limit of 
t ! 1 and small

spectral Rossby number (strong rotation) is as follows. There are inverse energy transfer by

�U=�u with �5=3 omni-directional energy spectrum. This is the same as the two dimensional

turbulence. In the meantime, there is also a direct energy cascade governed by the equation

for the passive vector V introduced in Sec. 3 at 
t ! 1 and 
 >> �k. The energy

spectrum of the full velocity U is given by Eqs. (5.15)-(5.17).

6 Concluding Remarks

In this paper we presented a general framework to study turbulence subjected to a uni-

form background rotation based on Green's method. In the analysis presented above we

assumed spatial homogeneity of turbulent 
ows. Although the application of this method

in complex geometries alters the integral convolution kernels in the Poincar�e transformed

Navier-Stokes equations, the mathematical procedure is still valid provided that explicit

asymptotic expressions for the Green's tensor can be obtained. For example, in the case of

a turbulent 
ow subjected to an uniform background rotation occupying a region D, the

Green's tensor corresponding to the gyroscopic operator is found from the linear problem

@

@t
U� �r2U+ 2
JU = �rp;

r �U = 0: (6.1)

Then the Poincar�e transformation which relates the 
uid velocity U with the Poincar�e

velocity variable u is given by

U(t; x) = Gu =

Z
D
G(
t; �t; x; y)u(y)dy: (6.2)

As a result, the Navier-Stokes equations written in terms of the Poincar�e velocity variables

take the form

@

@t
u = B(
t; �t;u;u); (6.3)

where

B(
t; �t;u;u) = G�1PfGu� curlGug: (6.4)
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When explicit expression for the gyroscopic operator G can be obtained, the relation be-

tween the nonlinear (turbulent), rotation, and viscous time scales in Eq. (6.4) are trans-

parent. In general, explicit expressions are not available. However, for certain domains of

interest (e.g. turbulent 
ow between rotating parallel plates) one can obtain explicit expres-

sions for the gyroscopic operator valid in the asymptotic limits � = 
t! 0, � = 
t! +1.

Then one can apply the analysis presented in this paper.
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A Appendix: EDQNM closure for the Poincar�e transformed

equations

We consider the most general term in (2.17). It has the form

@u�

@t
(k; t) + �k2u�(k; t) = �

i

2

X
p

f(p; k;
t)Q��
(k; p)u�(p; t)u
(k� p; t):

We de�ne

S��(k; t) =< u�(k; t)u�(�k; t) >;

T��
(k;p; t) =< u�(k; t)u�(p; t)u
(�k� p; t) >;

U��
�(k;p;q; t) =< u�(k; t)u�(p; t)u
(q; t)u�(�k� p� q; t) > :

The tensors S, T , U are called cumulants of the second, third and fourth order, respectively.

Following Orszag16, we obtain equations for S��(k; t) and T��
(k;p; t). We have

(
@

@t
+ 2�k2)S��(k; t) =

�
i

2

X
p

(f(p; k;
t)Q���(p;k)T���(�k;p; t) + f(p;�k;
t)Q���(p;�k)T���(k;p; t)) (A.1)

and

(
@

@t
+ �(k2 + p2 + q2))T��
(k;p; t) = �

i

2

X
r

(Q���(r;k)f(r; k;
t)U�
��(p;q; r; t) +

Q���(r;p)f(r; p;
t)U�
��(k;q; r; t) +

Q
��(r;q)f(r; q;
t)U����(k;p; r; t)): (A.2)

We then use a quasi-normal assumption and express U����(k;p; r; t) in terms of S It implies

(
@

@t
+ �(k2 + p2 + q2))T��
(k;p; t) =

�
i

2
(Q���(�p;k)f(�p; k;
t)S��(p; t)S
�(q; t) + Q���(�q;k)f(�q; k;
t)S��(p; t)S
�(q; t) +

Q���(�k;p)f(�k; p;
t)S��(k; t)S
�(q; t) +Q���(�q;p)f(�q;p;
t)S��(k; t)S
�(q; t) +

Q
��(�k;q)f(�k; q;
t)S��(k; t)S��(p; t) + Q
��(�p;q)f(�p; q;
t)S��(k; t)S��(p; t)):

Before we proceed further, the Eddy Damping approximation must be introduced. For the

non-rotating turbulence, it was found that the quasi-normal approximation alone is not sat-

isfactory. In particular, the energy spectrum obtained in evolution would become negative
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valued. Orszag16 found that this unphysical behavior may be understood on the basis of

improper relaxation time. Formal solution of T from its evolution equation introduces a

memory integral. The memory integral should not involve only a viscous cut-o� when the

Reynolds number is large. Instead, the memory should cut-o� because phase correlation

between Fourier modes (or eddies) do not persist in the random convention �elds of other

eddies. The Eddy-Damped Quasi-normal approximation is proposed [Orszag16]. The es-

sential of the `Eddy-Damping' is to approximate the fourth-order cumulants neglected by

a linear damping term and to enhance the viscous term by �(k2 + p2 + q2) + �kpq : The

parameter �kpq , which has the dimension of the inverse time, is the characteristic \decor-

relation rate" of the third order moments. Lesieur17 stressed that its choice is essential if

one want to use the theory for quantitative predictions. For isotropic turbulence, Orszag16

recommended that

�kpq = �k + �p + �q (A.3)

where

�k � [k3E(k)]1=2 (A.4)

is the inverse of the local eddy turn over time. This approximation is known as the Eddy-

Damped Quasi-Normal (EDQN) approximation.

As discussed in detail by Orszag16 and Lesieur17, the EDQN approximation does not

guarantee the realizability (the positiveness of the energy spectrum). A simple modi�ca-

tion, called `Markovianization', is needed. The essential of this approximation is that the

exponential term varies at the nonlinear time scale �nl = [�(k2 + p2 + q2) + �kpq]
�1, which

is much shorter than the time scale governing the evolution of
P

< uu >< uu > (on

the order of the large-eddy turn-over time). The Eddy-Damped Quasi-Normal Markovian

(EDQNM) approximation, therefore, assumes the e�ect of the time integration only over

the exponential part memoral integrals:

�1 =

Z t

0
expf�[�(k2 + p2 + q2) + �kpq ](t� �)gf(�p; k;
�)d�;
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�2 =

Z t

0
expf�[�(k2 + p2 + q2) + �kpq ](t� �)gf(�q; k;
�)d�

�3 =

Z t

0
expf�[�(k2 + p2 + q2) + �kpq ](t� �)gf(�k; p;
�)d�;

�4 =

Z t

0
expf�[�(k2 + p2 + q2) + �kpq ](t� �)gf(�q; p;
�)d�

�5 =

Z t

0
expf�[�(k2 + p2 + q2) + �kpq ](t� �)gf(�k; q;
�)d�;

�6 =

Z t

0
expf�[�(k2 + p2 + q2) + �kpq ](t� �)gf(�p; q;
�)d�: (A.5)

Then we obtain

T��
(k;p; t) = i(�1Q���(�p;k)S��(p; t)S
�(q; t) + �2Q���(�q;k)S��(p; t)S
�(q; t) +

�3Q���(�k;p)S��(k; t)S
�(q; t) + �4Q���(�q;p)S��(k; t)S
�(q; t) +(A.6)

�5Q
��(�k;q)S��(k; t)S��(p; t) + �6Q
��(�p;q)S��(k; t)S��(p; t)):

Using (A.6) we get expressions for T���(�k; p; t) and T���(k; p; t) in (A.1). Now we

substitute these expressions in (A.1) to obtain

(
@

@t
+ 2�k2)S��(k; t) = (A.7)

�
X
p

f(p; k;
t)Q���(p; k)(�1Q���(�p;�k)S��(p; t)S��(q; t) +

�2Q���(�q;�k)S��(p; t)S��(q; t) +

�3Q���(k; p)S��(�k; t)S��(q; t) + �4Q���(�q; p)S��(�k; t)S��(q; t) +

�5Q���(k; q)S��(�k; t)S��(p; t) + �6Q���(�p; q)S��(�k; t)S��(p; t))�

�
X
p

f(p;�k;
t)Q���(p;�k)(�̂1Q���(�p; k)S��(p; t)S��(q; t) +

�̂2Q���(�q; k)S��(p; t)S��(q; t) +

�̂3Q���(�k; p)S��(k; t)S��(q; t) + �̂4Q���(�q; p)S��(k; t)S��(q; t) +

�̂5Q
��(�k; q)S��(k; t)S��(p; t) + �̂6Q���(�p; q)S��(k; t)S��(p; t)):

The EDQNM evolution of the second order spectral tensor gives a complete description

of the energy transfer and anisotropic structure of rotating turbulence.

Taking trace in (A.7) and combining terms, we obtain an equation for U(k; t).

(
@

@t
+ 2�k2)U(k; t) =

X
p

(a0(k; p; q;
; t)U(p; t)U(q; t)+ (A.8)
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b0(k; p; q;
; t)U(k; t)U(q; t)+ c0(k; p; q;
; t)U(k; t)U(p; t)):

In (4.2) it is understood that k = p+ q. The geometrically determined coe�cients a0(k; p; q;
; t),

b0(k; p; q;
; t) and c0(k; p; q;
; t) are given by

a0(k; p; q;
; t) = �
1

4
f(p; k;
t)Q���(p; k)(�1Q���(�p;�k)P��(p)P��(q) +

�2Q���(�q;�k)P��(p)P��(q))�

1

4
f(p;�k;
t)Q���(p;�k)(�̂1Q���(�p; k)P��(p)P��(q) +

�̂2Q���(�q; k)P��(p)P��(q)) (A.9)

b0(k; p; q;
; t) = �
1

4
f(p; k;
t)Q���(p; k)(�3Q���(k; p)P��(�k)P��(q) +

�4Q���(�q; p)P��(�k)P��(q))�

�
1

4
f(p;�k;
t)Q���(p;�k)(�̂4Q���(�q; p)P��(k)P��(q) + �̂3Q���(�k; p)P��(k)P��(q));(A.10)

c0(k; p; q;
; t) = �
1

4
f(p; k;
t)Q���(p; k)(�5Q���(k; q)P��(�k)P��(p) +

�6Q���(�p; q)P��(�k)P��(p))�

�
1

4
f(p;�k;
t)Q���(p;�k)(�̂5Q
��(�k; q)P��(k)P��(p) +

�̂6Q���(�p; q)P��(k)P��(p)):

We note that the geometrically determined coe�cients a0, c0 and c0 contain f and �.

The coe�cients � are given by (A.5).
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